Keeping it Ruby:

Why Your Product Needs a Ruby SDK

Sampo Kuokkanen, Andrey Novikov
Evil Martians

RubyWorld Conference 2024

05 December 2024

https://2024.rubyworld-conf.org/

'O'pen sour'ce enthu3|ast T

mébrgxy ee:/r-ly!adopter'

E‘!‘.‘

EUIL MARTIANS

https://evilmartians.com/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://evilmartians.com/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://evilmartians.com/

1-EN-3=-9%YR

LREA 5 evilmartians.jp

2L

!OQE
|

https://evilmartians.com/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://evilmartians.com/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://evilmartians.jp/

Martian Open Source

&

Ruby Next makes modern Ruby code Yabeda: Ruby application Lefthook: git hooks manager AnyCable: Polyglot replacement for
run in older versions and instrumentation framework ActionCable server
alternative implementations

PostCSS: A tool for transforming Imgproxy: Fast and secure Overmind: Process manager for . Even. more at
CSS with JavaScript standalone server for resizing and Procfile-based applications and eVIImar'tlanS.com/oss
converting remote images tmux

00

https://ruby-next.github.io/
https://github.com/yabeda-rb/yabeda
https://github.com/evilmartians/lefthook
https://anycable.io/
https://postcss.org/
https://imgproxy.net/
https://github.com/DarthSim/overmind
https://evilmartians.com/oss

Ruby in 2024 Still Going Strong

Ruby’s Continuing Popularity

RubyGems Downloads

= QOver 100 billion total downloads
= Growing year over year
= Active ecosystem

GitHub Statistics

= Top 10 most popular language!
= Strong in web development
= Active community

=5

Ruby Ecosystem

—

RubyGems

v

Rails

A

T

Active & Friendly
Community

A

100B+ Downloads

Startup Favorite

Regular Updates

We Love Gems!

A

Investments!

We @ Ruby

But sometimes it is just not right tool for the job

=5

The common problem for any web app

Handling images uploaded by users: profile pictures, product photos, reviews, ...

We need to store them and show in various places, of course! And for this we need
to:

= Generate thumbnails to save bandwidth
= Crop to fit design

= Add watermarks to prevent theft

“Classic” way

User Server Storage JobQueue ImageStorage

» Upload image to the server

Uploads Image
-

Probably among other form fields Stores Imase

= Store it somewhere L o

Often on S3 or other cloud storage Retreves Thumbnai

= Generate all required thumbnails

D —

As many as your design requires

= Store them somewhere

Requests thumbnail

Again S3 or other cloud storage L

= Serve them to the user)

Returns thumbnail
-

CDN will help here

Ee

User Server Storage JobQueue ImageStorage

Problems of “classic” approach

= Hard to predict latency: background jobs can queue

It can take a while to get your image processed, and “image is processing” fallbacks are ugly

= Hard to add new variants: need to reprocess all images

Possibly millions of jobs to run before enabling it on the front-end

= And hard to clean up old ones

Space is cheap, but not free

= Deployment: gets complicated

You need to install ImageMagick or libvips on all servers/containers

= Security: it is your headache

T

https://www.bamsoftware.com/hacks/deflate.html

Do we have to do things
this way?

What if we could just generate thumbnails on the fly?

=5

Meet image processing servers

User Server Storage imgproxy

They do just one thing, but do it well

Uploads Image

There ape many Of them: Notifies about upload
. . Thumbnail URL -

= imaginary
""""""""" - Requests thumbnail

" P_h _lfl_m__b_ 9_[‘_ Retrieves image

u CI 0 U d in a p y generatehthl;[nbnail
-------------------- - on the fly

" _im g_i_)_(_ Respond with thumbnail

" _I mg_g_g_[‘_ User Server Storage imgproxy

https://github.com/h2non/imaginary
https://www.thumbor.org/
https://cloudinary.com/
https://www.imgix.com/
https://github.com/cshum/imagor
https://imgproxy.net/

Solving it with on-the-fly processing

= Complexity: replace your code with a microservice

Throw away all these background jobs, and replace them with a simple URL construction.

» Latency: dedicated service that do onlyimages processing
VVery performant per se, and you can scale it independently from your main application, also add CDN in
front of it

= Adding new variants: just construct new URL

Construct new URL, request it, done!

» Cleaning up old ones: let CDN caches to expire

Do you really need to store thumbnails at all? Care only for originals.

» Security and stability: it is separate from your main application

It handles image bombs, and other nasty stuff, but even if some malicious code will be executed, it will
find itself in empty Docker container without anything in it.

(folo))

Which one to choose?

= Should it be one written in Ruby?

But if it is a dedicated service, does it matter?

Maybe it is better to choose most performant one?

= Should it be one that is easy to use from Ruby?

What are you looking first for when choosing a new dependency?

Is there a gem?

of course there is!

imgproxy

» Open source image processing server C%
= Writtenin Go and C for performance s
» Uses libvips for optimal image processing
» Dockerized and easy to deploy

» Most Ruby-friendly solution!!

» Started at Evil Martians

» Used by companies big and small:

Bluesky, dev.to, Photobucket, eBay, ... Watermark

O

Original image imgproxy URL

https://mars.nasa.gov/system/ https://demo.imgproxy.net
downloadable_items/40368_PIA222 8/rs:fil1:1160:532:1/dpr:
28.7jpg 9pbWdwcm94eS5uZXQvd2FB8zZXJ

1. There is a gem! Two of them! [v%2Fsystem%2Fdownloadable

Jloc I oo)
= Y

https://bsky.app/profile/inazarova.bsky.social/post/3lc3745dvg22q
https://bsky.app/profile/inazarova.bsky.social/post/3lc3745dvg22q

But why gem?

What value it brings to both product owners and users?

Ee

Technical example: URL signing

The only thing a client need to care about is constructing URLs to images processed through imgproxy.

Given original image URL:
https://mars.nasa.gov/system/downloadable_items/40368_PIA22228. jpg

Result URL to get 300x150 thumbnail for Retina displays, smart cropped, and saturated, withwatermarkin
right bottom corner:

https://demo.imgproxy.net/
doqHNTjtFpozyphRz1QTHyB1loSoYS131LuMDozTnxgA /d—) i
rs:fill:300:150:1/dpr:2/g:ce/sa:1.4/ < Processing options

wm:9.5:50ea:0:0:0.2/wmu:aHROcHM6Ly9pbWdwecm94eS5uZXQvd2FOZX It / Original image URL
plain/

https:%2F%2Fmars.nasa.gov%2Fsystem%2Fdownloadable_items%2F40368_PIA22228. jpg

Digital signature

P

https://docs.imgproxy.net/generating_the_url

Plain Ruby implementation

It is easy to implement yourself (for one specific use case)

require 'baseb4d
require 'openssl

key = ['943b421c9eb@7c83..."'].pack('H*")
salt = ['520f986b998545b4..."'].pack('H*")

def generate_url(url, width, height)
encoded_url Baseé4.urlsafe_encodeé64(url) .tr('=",)
encoded_url = encoded_url.scan(/.{1,16}/).join('/")

path = "/resize:fill:#{width}:#{height}/#{encoded_url}
hmac = OpenSSL.hmac(
OpenSSL: :Digest.new('sha256'), key, "#{salt}#{path}

)

signature = Baseé4.urlsafe_encodeé4(hmac).tr('=",)

http://imgproxy.example.com/#{signature}#{path}
end

url = generate_url("http://example.com/image.jpg", 300, 400)

00

With imgproxy gem

But always better to use a battle-tested library that will hide all gory details
require 'imgproxy
Imgproxy.configure do |configl

config.endpoint = "http://imgproxy.example.com

config.key = '943b421c9eb07c83...
config.salt = '520f986b998545b4. ..
end

<%= image_tag Imgproxy.url_for(
http://images.example.com/images/image. jpg
width: 500,
height: 400,
resizing_type: :fill
) %>

T

]

imgproxy.rb gem

https://github.com/imgproxy/imgproxy.rb
https://github.com/imgproxy/imgproxy.rb
https://github.com/imgproxy/imgproxy.rb

ActiveStorage + imgproxy

What is even better: to use familiar APl and don’t change your codebase!
gem 'imgproxy-rails
config.active_storage.resolve_model_to_route rails_storage_proxy

config.active_storage.resolve_model_to_route imgproxy_active_storage

image_tag Current.user.avatar.variant(resize 100x100

You don’t even have to know that you are using imgproxy!

And you can migrate the whole application to imgproxy in an hour!

https://github.com/imgproxy/imgproxy-rails
https://github.com/imgproxy/imgproxy-rails
https://github.com/imgproxy/imgproxy-rails

Let the community speak

| clicked the button, deployed the OSS version and hooked up
the imgproxy.rb ruby gem in my app in under an hour.

Within a few weeks, we had switched over all of our upload,
template, and graphic previews to Imgproxy...

Doing so resulted in the removal of hundreds of lines of code
while also enabling new functionality.

— John Nunemaker: Ruby programmer and founder, author of flipper and httpartygems

https://www.johnnunemaker.com/imgproxy/

https://www.johnnunemaker.com/imgproxy/
https://www.johnnunemaker.com/imgproxy/
https://www.johnnunemaker.com/imgproxy/
https://www.johnnunemaker.com/imgproxy/

Why to “keep it Ruby?”

Why to spend time and effort to provide official Ruby SDK?

Answer is in this quote from the previous slide:

| clicked the button, deployed the OSS version and hooked up
the imgproxy.rb ruby gem in my app in under an hour.

It wouldn’t be possible without a ready to use Ruby gem!

LE

Keeping your product Ruby-friendly

more customers, happier customers

=

Keep it Ruby! Thank youl!

() @imgproxy
@imgproxy_net
(@ @imgproxyemastodon.social

% @imgproxy.net

o

[=]

[=]

imgproxy.net

om () @evilmartians
@evilmartians
(@ @evilmartiansemastodon.social

EUIL MARTIANS %¢ @evilmartians.com E ik

evilmartians.com

[x]
ey [m]

Our awesome blog: evilmartians.com/chronicles!

https://github.com/imgproxy/
https://twitter.com/imgproxy_net
https://mastodon.social/@imgproxy?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://bsky.app/profile/imgproxy.net
https://imgproxy.net/
https://imgproxy.net/
https://imgproxy.net/
https://evilmartians.com/
https://evilmartians.com/
https://github.com/evilmartians?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://twitter.com/evilmartians/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://mastodon.social/@evilmartians?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://bsky.app/profile/evilmartians.com?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://evilmartians.com/
https://evilmartians.com/
https://evilmartians.com/
https://evilmartians.com/chronicles/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://envek.github.io/rubyworld-keep-it-ruby/

