
Keeping it Ruby:

Why Your Product Needs a Ruby SDK

Sampo Kuokkanen, Andrey Novikov

Evil Martians

RubyWorld Conference 2024

05 December 2024

https://2024.rubyworld-conf.org/

Sampo KuokkanenSampo KuokkanenSampo KuokkanenSampo KuokkanenSampo Kuokkanen

Head of Evil Martians JapanHead of Evil Martians JapanHead of Evil Martians JapanHead of Evil Martians JapanHead of Evil Martians Japan

Ruby enthusiastRuby enthusiastRuby enthusiastRuby enthusiastRuby enthusiast

A fan of imgproxyA fan of imgproxyA fan of imgproxyA fan of imgproxyA fan of imgproxy

Andrey NovikovAndrey NovikovAndrey NovikovAndrey NovikovAndrey Novikov

Ruby developer at Evil MartiansRuby developer at Evil MartiansRuby developer at Evil MartiansRuby developer at Evil MartiansRuby developer at Evil Martians

Open source enthusiastOpen source enthusiastOpen source enthusiastOpen source enthusiastOpen source enthusiast

imgproxy early adopterimgproxy early adopterimgproxy early adopterimgproxy early adopterimgproxy early adopter

evilmartians.com

https://evilmartians.com/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://evilmartians.com/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://evilmartians.com/

evilmartians.jp
邪悪な火星人？ 🏯

https://evilmartians.com/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://evilmartians.com/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://evilmartians.jp/

Martian Open Source

Ruby Next makes modern Ruby code

run in older versions and

alternat ive implementat ions

Yabeda: Ruby applicat ion

instrumentat ion framework

Lefthook: git hooks manager AnyCable: Polyglot replacement for

Act ionCable server

PostCSS: A tool for transforming

CSS with JavaScript

Imgproxy: Fast and secure

standalone server for resizing and

convert ing remote images

Overmind : Process manager for

Procfile-based applicat ions and

tmux

Even more at

evilmartians.com/oss

Today's topic

https://ruby-next.github.io/
https://github.com/yabeda-rb/yabeda
https://github.com/evilmartians/lefthook
https://anycable.io/
https://postcss.org/
https://imgproxy.net/
https://github.com/DarthSim/overmind
https://evilmartians.com/oss

Ruby in 2024: Still Going Strong

Ruby’s Continuing Popularity

RubyGems Downloads

Over 100 billion total downloads

Growing year over year

Active ecosystem

GitHub Statistics

Top 10 most popular language!

Strong in web development

Active community

Ruby Ecosystem

RubyGems Rails

100B+ Downloads

We Love Gems!

Startup Favorite

Active & Friendly

Community

Regular Updates

Investments!

We 💓 Ruby

But sometimes it is just not right tool for the job

The common problem for any web app

We need to store them and show in various places, of course! And for this we need

to:

Generate thumbnails to save bandwidth

Crop to fit design

Add watermarks to prevent theft

…

Handling images uploaded by users: profile pictures, product photos, reviews, …

“Classic” way

Upload image to the server

Probably among other form fields

Store it somewhere

Often on S3 or other cloud storage

Generate all required thumbnails

As many as your design requires

Store them somewhere

Again S3 or other cloud storage

Serve them to the user

CDN will help here
ImageStorageJobQueueStorageServerUser

ImageStorageJobQueueStorageServerUser

Job

started

Generates

thumbnail

Uploads Image

Stores Image

Queues Job

Upload successful

Requests thumbnail

Retrieves Thumbnail

There are no thumbnails yet!

“Image is processing”

Retrieve image

Requests thumbnail

Retrieves Thumbnail

Oh yes, of course, here it is

Returns thumbnail

Unpredictablelatency
here

Problems of “classic” approach

Hard to predict latency: background jobs can queue

It can take a while to get your image processed, and “image is processing” fallbacks are ugly

Hard to add new variants: need to reprocess all images

Possibly millions of jobs to run before enabling it on the front-end

And hard to clean up old ones

Space is cheap, but not free

Deployment: gets complicated

You need to install ImageMagick or libvips on all servers/containers

Security: it is your headache

Processing images on your servers is a security and stability risk, e.g. PNG decompression bomb.

https://www.bamsoftware.com/hacks/deflate.html

Do we have to do things

this way?

What if we could just generate thumbnails on the fly?

Meet image processing servers

They do just one thing, but do it well

There are many of them:

imaginary

thumbor

cloudinary

imgix

imagor

imgproxy (our favorite ✨)
imgproxyStorageServerUser

imgproxyStorageServerUser

generate thumbnail

on the fly

Uploads Image

Notifies about upload

Thumbnail URL

Requests thumbnail

Retrieves image

Respond with thumbnail

https://github.com/h2non/imaginary
https://www.thumbor.org/
https://cloudinary.com/
https://www.imgix.com/
https://github.com/cshum/imagor
https://imgproxy.net/

Solving it with on-the-fly processing

Complexity: replace your code with a microservice

Throw away all these background jobs, and replace them with a simple URL construction.

Latency: dedicated service that do only images processing

Very performant per se, and you can scale it independently from your main application, also add CDN in

front of it

Adding new variants: just construct new URL

Construct new URL, request it, done!

Cleaning up old ones: let CDN caches to expire

Do you really need to store thumbnails at all? Care only for originals.

Security and stability: it is separate from your main application

It handles image bombs, and other nasty stu�, but even if some malicious code will be executed, it will

find itself in empty Docker container without anything in it.

Which one to choose?

Should it be one written in Ruby?

But if it is a dedicated service, does it matter?

Maybe it is better to choose most performant one?

Should it be one that is easy to use from Ruby?

What are you looking first for when choosing a new dependency?

Is there a gem?

of course there is!

Introducing
imgproxy

Open source image processing server

Written in Go and C for performance

Uses libvips for optimal image processing

Dockerized and easy to deploy

Most Ruby-friendly solution

Started at Evil Martians

Used by companies big and small:

Bluesky, dev.to, Photobucket, eBay, …

1. There is a gem! Two of them! ↩

[1]

https://bsky.app/profile/inazarova.bsky.social/post/3lc3745dvg22q
https://bsky.app/profile/inazarova.bsky.social/post/3lc3745dvg22q

But why gem?

What value it brings to both product owners and users?

Technical example: URL signing

The only thing a client need to care about is constructing URLs to images processed through imgproxy.

Given original image URL:

Result URL to get 300�150 thumbnail for Retina displays, smart cropped, and saturated, with watermark in

right bottom corner:

See https://docs.imgproxy.net/generating_the_url

https://mars.nasa.gov/system/downloadable_items/40368_PIA22228.jpg

https://demo.imgproxy.net/

doqHNTjtFpozyphRzlQTHyBloSoYS13lLuMDozTnxqA/

rs:fill:300�150�1/dpr:2/g:ce/sa:1.4/

wm:0.5:soea:0�0�0.2/wmu:aHR0cHM6Ly9pbWdwcm94eS5uZXQvd2F0ZXJtYXJrLnN2Zw/

plain/

https:%2F%2Fmars.nasa.gov%2Fsystem%2Fdownloadable_items%2F40368_PIA22228.jpg

Digital signature

Processing options

Original image URL

https://docs.imgproxy.net/generating_the_url

Plain Ruby implementation

It is easy to implement yourself (for one specific use case)

require 'base64'

require 'openssl'

key = ['943b421c9eb07c83...'].pack('H*')

salt = ['520f986b998545b4...'].pack('H*')

def generate_url(url, width, height)

 encoded_url = Base64.urlsafe_encode64(url).tr('=', '')

 encoded_url = encoded_url.scan(/.{1,16}/).join('/')

 path = "/resize:fill:#{width}:#{height}/#{encoded_url}"

 hmac = OpenSSL.hmac(

 OpenSSL::Digest.new('sha256'), key, "#{salt}#{path}"

)

 signature = Base64.urlsafe_encode64(hmac).tr('=', '')

 "http://imgproxy.example.com/#{signature}#{path}"

end

url = generate_url("http://example.com/image.jpg", 300, 400)

With imgproxy gem

But always better to use a battle-tested library that will hide all gory details

require 'imgproxy'

Imgproxy.configure do |config|

 # Full URL to where your imgproxy lives.

 config.endpoint = "http://imgproxy.example.com"

 # Hex-encoded signature key and salt

 config.key = '943b421c9eb07c83...'

 config.salt = '520f986b998545b4...'

end

<%# show.erb.html %>

<%= image_tag Imgproxy.url_for(

 "http://images.example.com/images/image.jpg",

 width: 500,

 height: 400,

 resizing_type: :fill

) %> imgpr oxy.r b gem

https://github.com/imgproxy/imgproxy.rb
https://github.com/imgproxy/imgproxy.rb
https://github.com/imgproxy/imgproxy.rb

ActiveStorage + imgproxy

What is even better: to use familiar API and don’t change your codebase!

You don’t even have to know that you are using imgproxy! ✨

And you can migrate the whole application to imgproxy in an hour!

Gemfile

gem 'imgproxy-rails'

development.rb: use built-in Rails proxy

config.active_storage.resolve_model_to_route = :rails_storage_proxy

production.rb: use imgproxy

config.active_storage.resolve_model_to_route = :imgproxy_active_storage

<%# show.erb.html %>

<%= image_tag Current.user.avatar.variant(resize: "100x100") %>

imgpr oxy-r ails gem

https://github.com/imgproxy/imgproxy-rails
https://github.com/imgproxy/imgproxy-rails
https://github.com/imgproxy/imgproxy-rails

Let the community speak

I clicked the button, deployed the OSS version and hooked up

the imgproxy.rb ruby gem in my app in under an hour.

Within a few weeks, we had switched over all of our upload,

template, and graphic previews to Imgproxy…

Doing so resulted in the removal of hundreds of lines of code

while also enabling new functionality.

— John Nunemaker: Ruby programmer and founder, author of flipper and httparty gems

https://www.johnnunemaker.com/imgproxy/
Imgpr oxy is Amazin g

https://www.johnnunemaker.com/imgproxy/
https://www.johnnunemaker.com/imgproxy/
https://www.johnnunemaker.com/imgproxy/
https://www.johnnunemaker.com/imgproxy/

Why to “keep it Ruby?”

Answer is in this quote from the previous slide:

I clicked the button, deployed the OSS version and hooked up

the imgproxy.rb ruby gem in my app in under an hour.

It wouldn’t be possible without a ready to use Ruby gem!

Why to spend time and e�ort to provide o�cial Ruby SDK?

Keeping your product Ruby-friendly

=
more customers, happier customers

Keep it Ruby! Thank you!

@imgproxy

@imgproxy_net

@imgproxy@mastodon.social

@imgproxy.net
imgpr oxy.n et

@evilmartians

@evilmartians

@evilmartians@mastodon.social

@evilmartians.com
evi lmar tian s .com

Our awesome blog: evilmartians.com/chronicles!

See these slides at envek.github.io/rubyworld-keep-it-ruby

https://github.com/imgproxy/
https://twitter.com/imgproxy_net
https://mastodon.social/@imgproxy?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://bsky.app/profile/imgproxy.net
https://imgproxy.net/
https://imgproxy.net/
https://imgproxy.net/
https://evilmartians.com/
https://evilmartians.com/
https://github.com/evilmartians?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://twitter.com/evilmartians/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://mastodon.social/@evilmartians?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://bsky.app/profile/evilmartians.com?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://evilmartians.com/
https://evilmartians.com/
https://evilmartians.com/
https://evilmartians.com/chronicles/?utm_source=rubyworld&utm_medium=slides&utm_campaign=keep-it-ruby
https://envek.github.io/rubyworld-keep-it-ruby/

